Ready-to-Use Code
Browse and copy useful code snippets for algorithms, UI components, utilities, and more. Curated by MUITSA members.
Showing 13 snippets
C++ - Quick Sort Algorithm
Efficient sorting algorithm with O(n log n) average time complexity
#include <iostream>
using namespace std;
int partition(int arr[], int low, int high) {
    int pivot = arr[high];
    int i = low - 1;
    
    for (int j = low; j < high; j++) {
        if (arr[j] < pivot) {
            i++;
            swap(arr[i], arr[j]);
        }
    }
    swap(arr[i + 1], arr[high]);
    return i + 1;
}
void quickSort(int arr[], int low, int high) {
    if (low < high) {
        int pi = partition(arr, low, high);
        quickSort(arr, low, pi - 1);
        quickSort(arr, pi + 1, high);
    }
}C++ - Linked List Implementation
Basic linked list with insert and display operations
struct Node {
    int data;
    Node* next;
    
    Node(int val) : data(val), next(nullptr) {}
};
class LinkedList {
private:
    Node* head;
    
public:
    LinkedList() : head(nullptr) {}
    
    void insert(int val) {
        Node* newNode = new Node(val);
        if (!head) {
            head = newNode;
            return;
        }
        Node* temp = head;
        while (temp->next) temp = temp->next;
        temp->next = newNode;
    }
    
    void display() {
        Node* temp = head;
        while (temp) {
            cout << temp->data << " -> ";
            temp = temp->next;
        }
        cout << "NULL\n";
    }
};Java - Object-Oriented Programming Basics
Encapsulation and basic OOP principles in Java
public class Student {
    private String name;
    private int studentId;
    private double gpa;
    
    // Constructor
    public Student(String name, int id, double gpa) {
        this.name = name;
        this.studentId = id;
        this.gpa = gpa;
    }
    
    // Getters
    public String getName() { return name; }
    public int getStudentId() { return studentId; }
    public double getGPA() { return gpa; }
    
    // Method to check if student is on dean's list
    public boolean isDeansList() {
        return gpa >= 3.5;
    }
    
    @Override
    public String toString() {
        return "Student{" +
            "name='" + name + '\'' +
            ", id=" + studentId +
            ", gpa=" + gpa + '}';
    }
}Java - ArrayList and Collections
Working with ArrayList and Stream API for data manipulation
import java.util.*;
public class StudentManager {
    private List<Student> students = new ArrayList<>();
    
    public void addStudent(Student student) {
        students.add(student);
    }
    
    public List<Student> getDeansList() {
        return students.stream()
            .filter(Student::isDeansList)
            .sorted(Comparator.comparingDouble(Student::getGPA).reversed())
            .collect(Collectors.toList());
    }
    
    public void displayAllStudents() {
        students.forEach(System.out::println);
    }
    
    public Student findById(int id) {
        return students.stream()
            .filter(s -> s.getStudentId() == id)
            .findFirst()
            .orElse(null);
    }
}Machine Learning - Linear Regression
Predict continuous values using linear regression
import numpy as np
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error, r2_score
# Sample data: Study hours vs Exam scores
X = np.array([[2], [3], [4], [5], [6], [7], [8], [9]])
y = np.array([50, 55, 65, 70, 75, 85, 90, 95])
# Split data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(
    X, y, test_size=0.2, random_state=42
)
# Create and train the model
model = LinearRegression()
model.fit(X_train, y_train)
# Make predictions
y_pred = model.predict(X_test)
# Evaluate the model
mse = mean_squared_error(y_test, y_pred)
r2 = r2_score(y_test, y_pred)
print(f"Mean Squared Error: {mse:.2f}")
print(f"R² Score: {r2:.2f}")
print(f"Slope: {model.coef_[0]:.2f}")
print(f"Intercept: {model.intercept_:.2f}")Machine Learning - K-Means Clustering
Group similar data points using unsupervised learning
import numpy as np
from sklearn.cluster import KMeans
from sklearn.preprocessing import StandardScaler
import matplotlib.pyplot as plt
# Sample data: Student performance metrics
data = np.array([
    [85, 90], [88, 92], [78, 80], [92, 95],
    [45, 50], [48, 52], [42, 48], [50, 55],
    [65, 70], [68, 72], [62, 68], [70, 75]
])
# Standardize the features
scaler = StandardScaler()
data_scaled = scaler.fit_transform(data)
# Apply K-Means clustering
kmeans = KMeans(n_clusters=3, random_state=42, n_init=10)
clusters = kmeans.fit_predict(data_scaled)
# Print cluster centers
print("Cluster Centers:")
for i, center in enumerate(kmeans.cluster_centers_):
    print(f"Cluster {i}: {center}")
# Visualize clusters
plt.scatter(data[:, 0], data[:, 1], c=clusters, cmap='viridis')
plt.scatter(kmeans.cluster_centers_[:, 0], 
            kmeans.cluster_centers_[:, 1], 
            marker='X', s=200, c='red')
plt.xlabel('Math Score')
plt.ylabel('Science Score')
plt.title('Student Performance Clustering')
plt.show()Machine Learning - Neural Network Basics
Build and train a neural network for multi-class classification
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
import numpy as np
# Create a simple neural network for classification
model = keras.Sequential([
    layers.Dense(64, activation='relu', input_shape=(10,)),
    layers.Dropout(0.2),
    layers.Dense(32, activation='relu'),
    layers.Dropout(0.2),
    layers.Dense(16, activation='relu'),
    layers.Dense(3, activation='softmax')  # 3 classes
])
# Compile the model
model.compile(
    optimizer='adam',
    loss='categorical_crossentropy',
    metrics=['accuracy']
)
# Sample training data
X_train = np.random.randn(100, 10)
y_train = keras.utils.to_categorical(
    np.random.randint(0, 3, 100), 3
)
# Train the model
history = model.fit(
    X_train, y_train,
    epochs=20,
    batch_size=32,
    validation_split=0.2,
    verbose=1
)
# Make predictions
X_test = np.random.randn(10, 10)
predictions = model.predict(X_test)
print("Predictions shape:", predictions.shape)Debounce Function
Delay function execution until user stops triggering events
function debounce(func, delay) {
  let timeoutId;
  return function(...args) {
    clearTimeout(timeoutId);
    timeoutId = setTimeout(() => func(...args), delay);
  };
}React Custom Hook - useLocalStorage
Persist state to localStorage with React hooks
function useLocalStorage(key, initialValue) {
  const [storedValue, setStoredValue] = useState(() => {
    try {
      const item = window.localStorage.getItem(key);
      return item ? JSON.parse(item) : initialValue;
    } catch (error) {
      console.error(error);
      return initialValue;
    }
  });
  const setValue = (value) => {
    try {
      setStoredValue(value);
      window.localStorage.setItem(key, JSON.stringify(value));
    } catch (error) {
      console.error(error);
    }
  };
  return [storedValue, setValue];
}Binary Search Algorithm
Efficient search algorithm for sorted arrays
def binary_search(arr, target):
    left, right = 0, len(arr) - 1
    
    while left <= right:
        mid = (left + right) // 2
        if arr[mid] == target:
            return mid
        elif arr[mid] < target:
            left = mid + 1
        else:
            right = mid - 1
    
    return -1Responsive Grid Layout
Auto-responsive grid that adapts to screen size
.grid-container {
  display: grid;
  grid-template-columns: repeat(auto-fit, minmax(250px, 1fr));
  gap: 1.5rem;
  padding: 2rem;
}
@media (max-width: 768px) {
  .grid-container {
    grid-template-columns: 1fr;
    gap: 1rem;
  }
}SQL Query - Top N Records
Get top 10 students by GPA using window functions
SELECT 
    student_id,
    name,
    gpa,
    ROW_NUMBER() OVER (ORDER BY gpa DESC) as rank
FROM students
WHERE gpa >= 3.5
LIMIT 10;Fetch API with Error Handling
Robust API call with proper error handling
async function fetchData(url) {
  try {
    const response = await fetch(url);
    if (!response.ok) {
      throw new Error(`HTTP error! status: ${response.status}`);
    }
    const data = await response.json();
    return data;
  } catch (error) {
    console.error('Fetch error:', error);
    throw error;
  }
}C++ - Quick Sort Algorithm
Efficient sorting algorithm with O(n log n) average time complexity
#include <iostream>
using namespace std;
int partition(int arr[], int low, int high) {
    int pivot = arr[high];
    int i = low - 1;
    
    for (int j = low; j < high; j++) {
        if (arr[j] < pivot) {
            i++;
            swap(arr[i], arr[j]);
        }
    }
    swap(arr[i + 1], arr[high]);
    return i + 1;
}
void quickSort(int arr[], int low, int high) {
    if (low < high) {
        int pi = partition(arr, low, high);
        quickSort(arr, low, pi - 1);
        quickSort(arr, pi + 1, high);
    }
}C++ - Linked List Implementation
Basic linked list with insert and display operations
struct Node {
    int data;
    Node* next;
    
    Node(int val) : data(val), next(nullptr) {}
};
class LinkedList {
private:
    Node* head;
    
public:
    LinkedList() : head(nullptr) {}
    
    void insert(int val) {
        Node* newNode = new Node(val);
        if (!head) {
            head = newNode;
            return;
        }
        Node* temp = head;
        while (temp->next) temp = temp->next;
        temp->next = newNode;
    }
    
    void display() {
        Node* temp = head;
        while (temp) {
            cout << temp->data << " -> ";
            temp = temp->next;
        }
        cout << "NULL\n";
    }
};Java - Object-Oriented Programming Basics
Encapsulation and basic OOP principles in Java
public class Student {
    private String name;
    private int studentId;
    private double gpa;
    
    // Constructor
    public Student(String name, int id, double gpa) {
        this.name = name;
        this.studentId = id;
        this.gpa = gpa;
    }
    
    // Getters
    public String getName() { return name; }
    public int getStudentId() { return studentId; }
    public double getGPA() { return gpa; }
    
    // Method to check if student is on dean's list
    public boolean isDeansList() {
        return gpa >= 3.5;
    }
    
    @Override
    public String toString() {
        return "Student{" +
            "name='" + name + '\'' +
            ", id=" + studentId +
            ", gpa=" + gpa + '}';
    }
}Java - ArrayList and Collections
Working with ArrayList and Stream API for data manipulation
import java.util.*;
public class StudentManager {
    private List<Student> students = new ArrayList<>();
    
    public void addStudent(Student student) {
        students.add(student);
    }
    
    public List<Student> getDeansList() {
        return students.stream()
            .filter(Student::isDeansList)
            .sorted(Comparator.comparingDouble(Student::getGPA).reversed())
            .collect(Collectors.toList());
    }
    
    public void displayAllStudents() {
        students.forEach(System.out::println);
    }
    
    public Student findById(int id) {
        return students.stream()
            .filter(s -> s.getStudentId() == id)
            .findFirst()
            .orElse(null);
    }
}Machine Learning - Linear Regression
Predict continuous values using linear regression
import numpy as np
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error, r2_score
# Sample data: Study hours vs Exam scores
X = np.array([[2], [3], [4], [5], [6], [7], [8], [9]])
y = np.array([50, 55, 65, 70, 75, 85, 90, 95])
# Split data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(
    X, y, test_size=0.2, random_state=42
)
# Create and train the model
model = LinearRegression()
model.fit(X_train, y_train)
# Make predictions
y_pred = model.predict(X_test)
# Evaluate the model
mse = mean_squared_error(y_test, y_pred)
r2 = r2_score(y_test, y_pred)
print(f"Mean Squared Error: {mse:.2f}")
print(f"R² Score: {r2:.2f}")
print(f"Slope: {model.coef_[0]:.2f}")
print(f"Intercept: {model.intercept_:.2f}")Machine Learning - K-Means Clustering
Group similar data points using unsupervised learning
import numpy as np
from sklearn.cluster import KMeans
from sklearn.preprocessing import StandardScaler
import matplotlib.pyplot as plt
# Sample data: Student performance metrics
data = np.array([
    [85, 90], [88, 92], [78, 80], [92, 95],
    [45, 50], [48, 52], [42, 48], [50, 55],
    [65, 70], [68, 72], [62, 68], [70, 75]
])
# Standardize the features
scaler = StandardScaler()
data_scaled = scaler.fit_transform(data)
# Apply K-Means clustering
kmeans = KMeans(n_clusters=3, random_state=42, n_init=10)
clusters = kmeans.fit_predict(data_scaled)
# Print cluster centers
print("Cluster Centers:")
for i, center in enumerate(kmeans.cluster_centers_):
    print(f"Cluster {i}: {center}")
# Visualize clusters
plt.scatter(data[:, 0], data[:, 1], c=clusters, cmap='viridis')
plt.scatter(kmeans.cluster_centers_[:, 0], 
            kmeans.cluster_centers_[:, 1], 
            marker='X', s=200, c='red')
plt.xlabel('Math Score')
plt.ylabel('Science Score')
plt.title('Student Performance Clustering')
plt.show()Machine Learning - Neural Network Basics
Build and train a neural network for multi-class classification
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
import numpy as np
# Create a simple neural network for classification
model = keras.Sequential([
    layers.Dense(64, activation='relu', input_shape=(10,)),
    layers.Dropout(0.2),
    layers.Dense(32, activation='relu'),
    layers.Dropout(0.2),
    layers.Dense(16, activation='relu'),
    layers.Dense(3, activation='softmax')  # 3 classes
])
# Compile the model
model.compile(
    optimizer='adam',
    loss='categorical_crossentropy',
    metrics=['accuracy']
)
# Sample training data
X_train = np.random.randn(100, 10)
y_train = keras.utils.to_categorical(
    np.random.randint(0, 3, 100), 3
)
# Train the model
history = model.fit(
    X_train, y_train,
    epochs=20,
    batch_size=32,
    validation_split=0.2,
    verbose=1
)
# Make predictions
X_test = np.random.randn(10, 10)
predictions = model.predict(X_test)
print("Predictions shape:", predictions.shape)Debounce Function
Delay function execution until user stops triggering events
function debounce(func, delay) {
  let timeoutId;
  return function(...args) {
    clearTimeout(timeoutId);
    timeoutId = setTimeout(() => func(...args), delay);
  };
}React Custom Hook - useLocalStorage
Persist state to localStorage with React hooks
function useLocalStorage(key, initialValue) {
  const [storedValue, setStoredValue] = useState(() => {
    try {
      const item = window.localStorage.getItem(key);
      return item ? JSON.parse(item) : initialValue;
    } catch (error) {
      console.error(error);
      return initialValue;
    }
  });
  const setValue = (value) => {
    try {
      setStoredValue(value);
      window.localStorage.setItem(key, JSON.stringify(value));
    } catch (error) {
      console.error(error);
    }
  };
  return [storedValue, setValue];
}Binary Search Algorithm
Efficient search algorithm for sorted arrays
def binary_search(arr, target):
    left, right = 0, len(arr) - 1
    
    while left <= right:
        mid = (left + right) // 2
        if arr[mid] == target:
            return mid
        elif arr[mid] < target:
            left = mid + 1
        else:
            right = mid - 1
    
    return -1Responsive Grid Layout
Auto-responsive grid that adapts to screen size
.grid-container {
  display: grid;
  grid-template-columns: repeat(auto-fit, minmax(250px, 1fr));
  gap: 1.5rem;
  padding: 2rem;
}
@media (max-width: 768px) {
  .grid-container {
    grid-template-columns: 1fr;
    gap: 1rem;
  }
}SQL Query - Top N Records
Get top 10 students by GPA using window functions
SELECT 
    student_id,
    name,
    gpa,
    ROW_NUMBER() OVER (ORDER BY gpa DESC) as rank
FROM students
WHERE gpa >= 3.5
LIMIT 10;Fetch API with Error Handling
Robust API call with proper error handling
async function fetchData(url) {
  try {
    const response = await fetch(url);
    if (!response.ok) {
      throw new Error(`HTTP error! status: ${response.status}`);
    }
    const data = await response.json();
    return data;
  } catch (error) {
    console.error('Fetch error:', error);
    throw error;
  }
}Share Your Code Snippets
Have useful code snippets? Share them with the MUITSA community and help others solve problems faster.